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ECS315 2017/1 Part IV.1 Dr.Prapun

10 Continuous Random Variables

10.1 From Discrete to Continuous Random Variables

10.1. In many practical applications of probability, physical sit-
uations are better described by random variables that can take on
a continuum of possible values rather than a discrete number of
values.

For the random variables to be discussed in this section,

• any individual value has probability zero:

P [X = x] = 0 for all x (18)

and that

• the supports are always uncountable.

These random variables are called continuous random vari-
ables.

10.2. Implications:

(a) We can see from (18) that the pmf is going to be useless for
this type of random variable. It turns out that the cdf FX
is still useful and we shall introduce another useful function
called probability density function (pdf) to replace the role of
pmf. However, integral calculus38 is required to formulate this
continuous analog of a pmf.

38This is always a difficult concept for the beginning student.
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(b) Because talking about P [X = x] for continuous RV is useless
(always 0), we instead talk about the probability that the RV
is in some interval, e.g. P [a < X < b].

10.3. In some cases, the random variable X is actually discrete
but, because the range of possible values is so large, it might be
more convenient to analyze X as a continuous random variable.

Example 10.4. Suppose that current measurements are read from
a digital instrument that displays the current to the nearest one-
hundredth of a mA. Because the possible measurements are lim-
ited, the random variable is discrete. However, it might be a more
convenient, simple approximation to assume that the current mea-
surements are values of a continuous random variable.

Example 10.5. If you can measure the heights of people with
infinite precision, the height of a randomly chosen person is a con-
tinuous random variable. In reality, heights cannot be measured
with infinite precision, but the mathematical analysis of the dis-
tribution of heights of people is greatly simplified when using a
mathematical model in which the height of a randomly chosen
person is modeled as a continuous random variable. [21, p 284]

Example 10.6. Continuous random variables are important mod-
els for

(a) voltages in communication receivers

(b) file download times on the Internet

(c) velocity and position of an airliner on radar

(d) lifetime of a battery

(e) decay time of a radioactive particle

(f) time until the occurrence of the next earthquake in a certain
region

(g) noise in communication systems
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Example 10.7. The simplest example of a continuous random
variable is the “random choice” of a number from the interval
(0, 1).

• In MATLAB, this can be generated by the command rand.
In Excel, use rand().

• The generation is “unbiased” in the sense that “any number
in the range (0,1) is as likely to occur as another number.”

• Histogram is flat over (0, 1) in the limit as the number of
samples increases to infinity regardless of the number of bins
as long as the bins have the same size. See Figure 19b.

• Formally, this is called a uniform RV on the interval (0, 1).
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Figure 19: Histogram of the values generated by MATLAB command rand.

Example 10.8. Put a piece of (unit-width and unit-height) paper
outdoor. Mark the location of the (center of) first drop of rain on
it. Record its horizontal position).

Example 10.9. In MATLAB, there are other commands (such
as randn) and ways to generate continuous random variables with
other shapes of histograms.
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Definition 10.10. We say that X is a continuous random vari-
able39 if we can find a (real-valued) function40 f such that, for any
set B, P [X ∈ B] has the form

P [X ∈ B] =

∫
B

f(x)dx. (19)

Equivalently,

P [some condition(s) on X] =

∫
{all the x values that

satisfy the condition(s)}

f (x) .

• In particular,

P [a ≤ X ≤ b] =

∫ b

a

f(x)dx. (20)

In other words, the area under the graph of f(x) between
the points a and b gives the probability P [a ≤ X ≤ b].

• The function f is called the probability density function
(pdf) or simply density.

• When we want to emphasize that the function f is a density
of a particular random variable X, we write fX instead of f .

39To be more rigorous, this is the definition for absolutely continuous random variable. At
this level, we will not distinguish between the continuous random variable and absolutely
continuous random variable. When the distinction between them is considered, a random
variable X is said to be continuous (not necessarily absolutely continuous) when condition (18)
is satisfied. Alternatively, condition (18) is equivalent to requiring the cdf FX to be continuous.
Another fact worth mentioning is that if a random variable is absolutely continuous, then it
is continuous. So, absolute continuity is a stronger condition.

40Strictly speaking, δ-“function” is not a function; so, can’t use δ-function here.
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206 Part 2: Probability

learning
objectives

After reading this
chapter, you should

be able to:

• Understand the nature and the applications of the normal distribution.

• Use the standard normal distribution and z-scores to determine probabilities
associated with the normal distribution.

• Use the normal distribution to approximate the binomial distribution.

• Understand the nature and the applications of the exponential distribution,
including its relationship to the Poisson distribution of Chapter 6.

• Use the computer in determining probabilities associated with the normal and
exponential distributions.

7.1 INTRODUCTION

Chapter 6 dealt with probability distributions for discrete random variables,
which can take on only certain values along an interval, with the possible values
having gaps between them. This chapter presents several continuous probability
distributions; these describe probabilities associated with random variables that
are able to assume any of an infinite number of values along an interval.

Discrete probability distributions can be expressed as histograms, where the
probabilities for the various x values are expressed by the heights of a series of
vertical bars. In contrast, continuous probability distributions are smooth curves,
where probabilities are expressed as areas under the curves. The curve is a func-
tion of x, and f(x) is referred to as a probability density function. Since the con-
tinuous random variable x can be in an infinitely small interval along a range or
continuum, the probability that x will take on any exact value may be regarded as
zero. Therefore, we can speak of probabilities only in terms of the probability that
x will be within a specified interval of values. For a continuous random variable,
the probability distribution will have the following characteristics:

The probability distribution for a continuous random variable:

1. The vertical coordinate is a function of x, described as f(x) and referred to as
the probability density function.

2. The range of possible x values is along the horizontal axis.
3. The probability that x will take on a value between a and b will be the

area under the curve between points a and b, as shown in Figure 7.1. The

a b
x

f(
x)

Area = P[a ≤  x ≤ b]

FIGURE 7.1
For a continuous random
variable, the probability dis-
tribution is described by a
curve called the probability
density function, f(x). The
total area beneath the curve
is 1.0, and the probability
that x will take on some
value between a and b is
the area beneath the curve
between points a and b.

Figure 20: For a continuous random variable, the probability distribution is
described by a curve called the probability density function, f(x). The total
area beneath the curve is 1.0, and the probability that X will take on some
value between a and b is the area beneath the curve between points a and b.

Example 10.11. For the random variable generated by the rand

command in MATLAB41 or the rand() command in Excel,

Definition 10.12. Recall that the support SX of a random vari-
able X is any set S such that P [X ∈ S] = 1. For continuous
random variable, SX is usually set to be {x : fX(x) > 0}.

Example 10.13. For the random variable X in Example 10.11,

Example 10.14. For noise in communication systems,

41The rand command in MATLAB is an approximation for two reasons:

(a) It produces pseudorandom numbers; the numbers seem random but are actually the
output of a deterministic algorithm.

(b) It produces a double precision floating point number, represented in the computer
by 64 bits. Thus MATLAB distinguishes no more than 264 unique double precision
floating point numbers. By comparison, there are uncountably infinite real numbers in
the interval from 0 to 1.
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Example 10.15. Consider a random variable X whose pdf is

fX (x) =

{
2x, 0 < x < 1,
0, otherwise.

(a) Find P [X > 0.5].

(b) Find P [0.2 < X < 0.3].

(c) Find P [0.19 < X < 0.21].

(d) Find P [0.79 < X < 0.81].

Observation: From the pdf expression, we know that fX(0.8) >
fX(0.2).

(a) Does this imply P [X = 0.8] > P [X = 0.2]? No! From (18),
we know that both probabilities are 0.

(b) fX(0.8) > fX(0.2) simply means the RV X is more likely to
be in the small interval around 0.8 than in the small interval
(of the same length) around 0.2. In fact, the ratio of the two
probabilities is approximately the ratio of the pdf values.
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10.16. Intuition/Interpretation:
The use of the word “density” originated with the analogy to

the distribution of matter in space. In physics, any finite volume,
no matter how small, has a positive mass, but there is no mass at
a single point. A similar description applies to continuous random
variables.

Approximately, for a small ∆x,

P [X ∈ [x, x+ ∆x]] =

∫ x+∆x

x

fX(t)dt ≈ fX(x)∆x.

This is why we call fX the density function.

4.1 Densities and probabilities 139

Definition

We say that X is a continuous random variable if P(X ∈ B) has the form

P(X ∈ B) =
∫

B
f (t)dt :=

∫ ∞

−∞
IB(t) f (t)dt (4.1)

for some integrable function f .a Since P(X ∈ IR) = 1, the function f must integrate to one;

i.e.,
∫ ∞
−∞ f (t)dt = 1. Further, since P(X ∈ B) ≥ 0 for all B, it can be shown that f must be

nonnegative.1 A nonnegative function that integrates to one is called a probability density

function (pdf).

Usually, the set B is an interval such as B = [a,b]. In this case,

P(a ≤ X ≤ b) =
∫ b

a
f (t)dt.

See Figure 4.1(a). Computing such probabilities is analogous to determining the mass of a

piece of wire stretching from a to b by integrating its mass density per unit length from a to

b. Since most probability densities we work with are continuous, for a small interval, say

[x,x+∆x], we have

P(x ≤ X ≤ x+∆x) =
∫ x+∆x

x
f (t)dt ≈ f (x)∆x.

See Figure 4.1(b).

(a) (b)

a b x+x x

Figure 4.1. (a) P(a ≤ X ≤ b) =
∫ b

a f (t)dt is the area of the shaded region under the density f (t). (b) P(x ≤ X ≤
x+∆x) =

∫ x+∆x
x f (t)dt is the area of the shaded vertical strip.

Note that for random variables with a density,

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b)

since the corresponding integrals over an interval are not affected by whether or not the

endpoints are included or excluded.

Some common densities

Here are some examples of continuous random variables. A summary of the more com-

mon ones can be found on the inside of the back cover.

aLater, when more than one random variable is involved, we write fX (x) instead of f (x).

Figure 21: P [x ≤ X ≤ x+ ∆x] is the area of the shaded vertical strip.

In other words, the probability of random variable X taking on
a value in a small interval around point c is approximately equal
to f(c)× d when d is the length of the interval.

• In fact, fX(x) = lim
∆x→0

P [x<X≤x+∆x]
∆x

• The number fX(x) itself is not a probability. In particular,
it does not have to be between 0 and 1.

• fX(c) is a relative measure for the likelihood that random
variable X will take on a value in the immediate neighborhood
of point c.

Stated differently, the pdf fX(x) expresses how densely the
probability mass of random variable X is smeared out in the
neighborhood of point x. Hence, the name of density function.
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10.17. Histogram and pdf [21, p 143 and 145]:
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Figure 22: From histogram to pdf.

(a) A probability histogram is a bar chart that divides the range
of values covered by the samples/measurements into intervals
of the same width, and shows the proportion (relative fre-
quency) of the samples in each interval.

• To make a histogram, break up the range of values covered by the samples
into a number of disjoint adjacent intervals each having the same width,
say width ∆. The height of the bar on each interval [j∆, (j + 1)∆) is
taken such that the area of the bar is equal to the proportion of the
measurements falling in that interval (the proportion of measurements
within the interval is divided by the width of the interval to obtain the
height of the bar).

• The total area under the probability histogram is thus standardized/nor-
malized to one.

(b) If you take sufficiently many independent samples from a con-
tinuous random variable and make the width ∆ of the base
intervals of the probability histogram smaller and smaller, the
graph of the probability histogram will begin to look more and
more like the pdf.

(c) Conclusion: A probability density function can be seen as
a “smoothed-out” normalized version of a (probability) his-
togram
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